Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.962
Filtrar
1.
J Chromatogr A ; 1722: 464889, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598894

RESUMO

In this paper, three imidazole- and C18- bifunctional silica stationary phases (Sil-Im-C18) were prepared by adjusting introduction interval of octadecyltrichlorosilane (ODS) and 3-imidazol-1-ylpropyl(trimethoxy)silane (TMPImS), which can be used for reversed-phase liquid chromatography (RPLC) and ion exchange chromatography (IEC) with adjustable performance. The successful preparation of Sil-Im-C18 were confirmed by the characterizations of elemental analysis, infrared spectroscopy (FTIR) and contact angle (CA). Chromatographic performance of Sil-Im-C18 were evaluated by the separation of Tanaka test mixture, alkylbenzenes, linear PAHs and a set of analytes with different properties (uracil, phenol, 1,2-dinitrobenzene and naphthalene), and compared with commonly used C18 column. It was found that the chromatographic performance of Sil-Im-C18 changed significantly with the difference in bonding amount of imidazole and C18. Sil-Im-C18 demonstrated the excellent separation performance towards polycyclic aromatic hydrocarbons (PAHs), phenylesters, phenylamines, phenols and inorganic anions, and notably, nucleobases and nucleosides can be separated using pure water as mobile phases. The van Deemter plot showed that the column efficiency of Sil-Im-C18-3 was 64,933 plate·m-1 for naphthalene, indicated that Sil-Im-C18 was reasonably chromatographic columns. The RSD values of retention time were 0.22 %-0.61 % for 10 needles alkylbenzenes injected continuously at 50 °C to investigate thermal stability and repeatability, all the fluctuations of k of naphthalene were less than 2.3 % for Sil-Im-C18-1 during flushing 24 h with the mobile phase at different pH values (pH = 3 and 8), the retention time of alkylbenzenes were almost same for Sil-Im-C18-1 at different time, the RSD values of retention time of alkylbenzenes were 0.45 %-2.28 % for two batches Sil-Im-C18-1, revealing the excellent repeatability, thermal stability, durability and reproducibility of Sil-Im-C18, and implying a commercial prospect.


Assuntos
Cromatografia de Fase Reversa , Imidazóis , Hidrocarbonetos Policíclicos Aromáticos , Dióxido de Silício , Imidazóis/química , Dióxido de Silício/química , Cromatografia de Fase Reversa/métodos , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/isolamento & purificação , Hidrocarbonetos Policíclicos Aromáticos/química , Silanos/química , Cromatografia por Troca Iônica/métodos
2.
Molecules ; 29(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474641

RESUMO

The catalytic properties of cytochrome c (Cc) have captured great interest in respect to mitochondrial physiology and apoptosis, and hold potential for novel enzymatic bioremediation systems. Nevertheless, its contribution to the metabolism of environmental toxicants remains unstudied. Human exposure to polycyclic aromatic hydrocarbons (PAHs) has been associated with impactful diseases, and animal models have unveiled concerning signs of PAHs' toxicity to mitochondria. In this work, a series of eight PAHs with ionization potentials between 7.2 and 8.1 eV were used to challenge the catalytic ability of Cc and to evaluate the effect of vesicles containing cardiolipin mimicking mitochondrial membranes activating the peroxidase activity of Cc. With moderate levels of H2O2 and at pH 7.0, Cc catalyzed the oxidation of toxic PAHs, such as benzo[a]pyrene, anthracene, and benzo[a]anthracene, and the cardiolipin-containing membranes clearly increased the PAH conversions. Our results also demonstrate for the first time that Cc and Cc-cardiolipin complexes efficiently transformed the PAH metabolites 2-hydroxynaphthalene and 1-hydroxypyrene. In comparison to horseradish peroxidase, Cc was shown to reach more potent oxidizing states and react with PAHs with ionization potentials up to 7.70 eV, including pyrene and acenaphthene. Spectral assays indicated that anthracene binds to Cc, and docking simulations proposed possible binding sites positioning anthracene for oxidation. The results give support to the participation of Cc in the metabolism of PAHs, especially in mitochondria, and encourage further investigation of the molecular interaction between PAHs and Cc.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Animais , Humanos , Hidrocarbonetos Policíclicos Aromáticos/química , Citocromos c , Cardiolipinas , Peróxido de Hidrogênio , Antracenos
3.
J Chem Inf Model ; 64(8): 3192-3204, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38500402

RESUMO

This work presents new experimental viscosity and density data for aromatic and polyaromatic compounds in binary and ternary pyrene, 1-methylnaphthalene, and dodecane mixtures. The lack of experimental viscosity data for these mixtures requires the development of a new database, which is vital for understanding the behavior of mixtures in more complex systems, such as asphaltenes and fuels. The mixtures proposed in this work have been measured over a temperature range of (293.15 to 343.15) K at atmospheric pressure. Several mixture compositions have been studied at these conditions: 1.0, 2.5, 5.0, 7.5, 10.0, 12.5, and 15.0% pyrene mass fraction. The concentration of pyrene correlates with an increase in the viscosity and density values. At the lowest temperature in binary mixtures, the corresponding values reach 4.4217 mPa·s for viscosity and 1.0447 × 103 kg·m-3 for density, respectively. In ternary mixtures, the introduction of dodecane leads to the lowest maximum values of 3.5555 mPa·s for viscosity and 1.0112 × 103 kg·m-3 for density at the same temperature. The experimental data have been employed for the specific modification of viscosity models. These modifications could facilitate the prediction of the viscosity of mixtures that are more complex than those presented in this work. Various viscosity models have been employed, such as Linear, Ratcliff and Khan, modified UNIFAC-Visco, and Krieger-Dougherty. The settings in the models used reliably reproduce the experiment reliably. However, the Ratcliff model agrees excellently with the experiment, having a low standard deviation (2.0%) compared to other models. Furthermore, a model based on the equation of state of Guo is proposed to predict the viscosity values by modifying the specific parameters and adjusting them to the mixtures proposed in this work. The results from this study are compared to previous work, where pyrene, toluene, and heptane mixtures were analyzed. In this case, we find that the decrease of aggregation grade in the present systems is predicted by the model fixed in this work.


Assuntos
Alcanos , Naftalenos , Pirenos , Temperatura , Pirenos/química , Viscosidade , Naftalenos/química , Alcanos/química , Modelos Químicos , Hidrocarbonetos Policíclicos Aromáticos/química
4.
J Hazard Mater ; 470: 134109, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38547751

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are prevalent environmental contaminants that are harmful to ecological and human health. Bioremediation is a promising technique for remediating PAHs in the environment, however bioremediation often results in the accumulation of toxic PAH metabolites. The objectives of this research were to demonstrate the cometabolic treatment of a mixture of PAHs by a pure bacterial culture, Rhodococcus rhodochrous ATCC 21198, and investigate PAH metabolites and toxicity. Additionally, the surfactant Tween ® 80 and cell immobilization techniques were used to enhance bioremediation. Total PAH removal ranged from 70-95% for fluorene, 44-89% for phenanthrene, 86-97% for anthracene, and 6.5-78% for pyrene. Maximum removal was achieved with immobilized cells in the presence of Tween ® 80. Investigation of PAH metabolites produced by 21198 revealed a complex mixture of hydroxylated compounds, quinones, and ring-fission products. Toxicity appeared to increase after bioremediation, manifesting as mortality and developmental effects in embryonic zebrafish. 21198's ability to rapidly transform PAHs of a variety of molecular structures and sizes suggests that 21198 can be a valuable microorganism for catalyzing PAH remediation. However, implementing further treatment processes to address toxic PAH metabolites should be pursued to help lower post-remediation toxicity in future studies.


Assuntos
Biodegradação Ambiental , Células Imobilizadas , Hidrocarbonetos Policíclicos Aromáticos , Rhodococcus , Tensoativos , Peixe-Zebra , Rhodococcus/metabolismo , Tensoativos/toxicidade , Tensoativos/química , Tensoativos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Animais , Células Imobilizadas/metabolismo , Polissorbatos/toxicidade , Polissorbatos/química , Poluentes Ambientais/toxicidade , Poluentes Ambientais/metabolismo , Poluentes Ambientais/química , Fenantrenos/toxicidade , Fenantrenos/metabolismo , Fenantrenos/química , Embrião não Mamífero/efeitos dos fármacos
5.
J Hazard Mater ; 470: 134122, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552397

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are a class of toxic organic pollutants commonly detected in the aqueous phase. Traditional biodegradation is inefficient and advanced oxidation technologies are expensive. In the current study, a novel strategy was developed using calcium peroxide (CP) and PAH-degrading bacteria (PDB) to effectively augment PAH degradation by 28.62-59.22%. The PDB consisted of the genera Acinetobacter, Stenotrophomonas, and Comamonas. Applying the response surface model (RSM), the most appropriate parameters were identified, and the predictive degradation rates of phenanthrene (Phe), pyrene (Pyr), and ΣPAHs were 98%, 76%, and 84%, respectively. The constructed mixed system could reduce 90% of Phe and more than 60% of ΣPAHs and will perform better at pH 5-7 and lower salinity. Because PAHs tend to bind to dissolved organic matter (DOM) with larger molecular weights, humic acid (HA) had a larger negative effect on the PAH-degradation efficiency of the CP-PDB mixed system than fulvic acid (FA). The proposed PAH-degradation pathways in the mixed system were based on the detection of intermediates at different times. The investigation constructed and optimized a novel environmental PAH-degradation strategy. The synergistic application of PDB and oxidation was extended for organic contaminant degradation in aqueous environments.


Assuntos
Biodegradação Ambiental , Peróxidos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Peróxidos/química , Peróxidos/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/química , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/química , Bactérias/metabolismo , Concentração de Íons de Hidrogênio
6.
Chemosphere ; 349: 140721, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37972863

RESUMO

Using magnesium-biochar composites (Mg-BC) in adsorption allows for the efficient and economically relevant removal of phosphate (PO43-) from water and wastewater. Applying Mg-BC for pollutant removal requires evaluating the adsorption capacity of composites and their ecotoxicological properties. Investigating the composite aging during the application of these composites into the soil is also essential. In the present study, nonaged and aged (at 60 or 90 °C) Mg-BC composites were investigated in the context of pyrolysis temperature (500 or 700 °C). All analyzed biochars were examined by Fourier transform infrared spectroscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy and surface area. The content of polycyclic aromatic hydrocarbons (PAHs) (bioavailable Cfree and organic solvent-extractable Ctot), heavy metals (HMs), and environmentally persistent free radicals (EPFRs) were determined. Ecotoxicity was evaluated using tests with Folsomia candida and Allivibrio fischeri. The dependence of adsorption on pyrolysis temperature and composite aging time was observed. Changes in physicochemical properties occurring as a result of aging reduced the adsorption of PO43- on Mg-BC composites. It was found that nonaged Mg-BC700 was more effective (9.55 mg g -1) in the adsorption of PO43- than Mg-BC500 (5.75 mg g-1). The adsorption capacities of aged composites were from 21 to 61% lower than those of the nonaged composites. Due to aging, the content of Cfree PAHs increased by 3-5 times depending on the pyrolysis temperature. However, aging reduced the Ctot PAHs in all composites from 24 to 35% depending on the pyrolysis temperature. Ecotoxicological evaluation of Mg-BC composites showed increased toxicity after aging to both organisms. The use of aged BC potentially increases the contaminant content and toxicity of Mg-BC composites.


Assuntos
Magnésio , Hidrocarbonetos Policíclicos Aromáticos , Adsorção , Fosfatos , Carvão Vegetal/química , Hidrocarbonetos Policíclicos Aromáticos/química
7.
J Environ Manage ; 351: 119628, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070423

RESUMO

The aim of the study was to investigate the effect of the biochar (BC) dose on solvent extractable (Ctot) and freely dissolved (Cfree) polycyclic aromatic hydrocarbons (PAHs) content during co-composting. A significantly better reduction of Σ16 Ctot PAHs after 98 days occurred during composting with BC (for 1% of BC - 44% and for 5% of BC - 23%) than in the control (15%). Despite the relatively high reduction of Ctot PAHs in the experiment with 5% BC rate, the content of the PAHs was still the highest compared to other variants. Regarding Cfree PAHs, 5% rate of BC resulted in the best reduction of PAHs, while the 1% BC dose resulted in a lower reduction of Cfree than the control. For 1% BC, PAHs losses was more effective, and sequestration processes played a less significant role than in the experiment with 5% dose of BC. The total and dissolved organic carbon, and ash were predominantly responsible for Ctot and Cfree losses, and additionally pH for Cfree. The results of the experiment indicate that BC performs a crucial role in composting, affecting the Ctot and Cfree PAHs in the compost but the final effect strictly depends on the BC dose.


Assuntos
Compostagem , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Esgotos/química , Triticum , Hidrocarbonetos Policíclicos Aromáticos/química , Poluentes do Solo/química , Carvão Vegetal/química , Solo/química
8.
Chemosphere ; 349: 140961, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104733

RESUMO

Polyaromatic hydrocarbons (PAHs) are life-threatening organic pollutants that severely threaten ecosystems worldwide due to their poisonous qualities, cancer-causing properties, and mutation-causing qualities. Water and soil together form a critical component of the ecosystem that supports all life. Due to the pollutants that are being disposed of in them, their characteristics have changed, and their toxicity has increased. The goal of this study was to investigate the ability of hausmannite nanoparticles to degrade fluorene from soil and water. Using the chemical method, hausmannite nanoparticles were synthesized and further characterization was performed using UV-Vis, FTIR, DLS, XRD, and SEM-EDAX. Hausmannite significantly degraded fluorene using the batch adsorption method. The degradation was also confirmed by performing reactive kinetics using Freundlich's isotherm model and Langmuir's pseudo-second-order model of soil and water. In addition to the degradation efficacy, hausmannite was also proved to inhibit biofilm formation by Pseudomonas aeruginosa. The findings of the experiments confirmed the presence of hausmannite nanoparticles, as well as their physical properties, chemical properties, degradation properties, and parameters of the kinetic study. As a result, synthesized nanoparticles have been extensively utilized as a low-cost option for removing pollutants and microbial biofilm.


Assuntos
Poluentes Ambientais , Nanopartículas Metálicas , Hidrocarbonetos Policíclicos Aromáticos , Ecossistema , Fluorenos , Água , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Biofilmes , Solo , Hidrocarbonetos Policíclicos Aromáticos/química
9.
Chemosphere ; 350: 141009, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141680

RESUMO

To date, remediation, protection, and restoration of contaminated sites is a global concern. The current technologies to restore sediments characterized by heterogeneous characteristics, several pollutants, fine grains, and low hydraulic permeability are poorly effective; hence their remediation is still challenging. A promising approach for the sediment's remediation could be the electrochemical route since it is a not-expensive, effective and noninvasive in situ technology. Electrochemical remediation (ER) is commonly studied under relatively high electric fields (E ≥ 1 V cm-1) and using costly processing fluids in a three compartments cell aiming to desorb and transport the contaminants into the processing fluids (secondary dangerous effluent). In this work, contaminated marine sediments were electrochemically treated focusing on the insertion of electrodes directly in the sediments and adopting, for the first time for real sediments, low E values (≤ 0.25 V cm-1) for 4-days period. It was observed that PAHs can be simultaneously transported and degraded in situ preventing the production of a secondary dangerous effluent and reducing the energy consumption. Firstly, clay marine sediments dragged from Capo Granitola Coast (Trapani, Italy) spiked with five PAHs congeners (5PAHs), Hg and As were used as a simplified model matrix and treated to simulate a real case study. A total PAHs removal efficiency of 57% was reached after 96 h of treatment under 0.05 V cm-1. Then, real polluted marine sediments from Augusta Bay (Syracuse) and Bagnoli-Coroglio Bay (Naples) in the southern Italy were treated as real contaminated sediments to be restored, to validate the proposed approach for real cases. A quite good removal efficiency of PAHs was reached after 96 h of electrochemical treatment coupled with a low energetic consumption due to the rather E values adopted. In addition, it was observed that this approach, under the adopted conditions, is unsuitable for the remediation of Hg and As.


Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Mercúrio , Metais Pesados , Hidrocarbonetos Policíclicos Aromáticos , Metais Pesados/análise , Hidrocarbonetos Policíclicos Aromáticos/química , Sedimentos Geológicos/química
10.
Clin Toxicol (Phila) ; 61(12): 1055-1058, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38047882

RESUMO

BACKGROUND: Illegal drugs are becoming a public health problem in African cities. In 2021, Bombé, a new drug of unknown composition, caused an outbreak of neuro-psychiatric symptoms in Kinshasa. Bombé was rumored to be based on ground catalytic exhausts stolen from cars. METHODS: The chemical composition of six samples of Bombé obtained from different neighborhoods in Kinshasa was determined by triple quad liquid chromatography-mass spectrometry/mass spectrometry with confirmation by quadrupole time-of-flight mass spectrometry. Metals were determined by inductively coupled plasma-mass spectrometry, and polycyclic aromatic hydrocarbons were measured by gas chromatography-mass spectrometry. RESULTS: Analysis of the Bombé samples revealed that it contained heroin (2-12% of the total area under the curve of the samples) and opioid derivatives, plus paracetamol (33-72%), caffeine (17-26%), and also benzodiazepines (5/6 samples) and cyproheptadine (2/6 samples). The concentrations of neurotoxic metals were unremarkable. The median (range) concentrations of manganese and lead were 9.4 µg/g (range 3-334 µg/g) and 0.36 µg/g (range 0.1-3.12 µg/g ), respectively. All polycyclic aromatic hydrocarbons were below the level of detection (<0.10 µg/g). CONCLUSION: Thanks to international collaboration, Bombé was documented to be a heroin-based drug and its alleged origin from catalytic exhausts was not substantiated. The local human expertise and technical capacity for undertaking toxicological analyses should be increased in Africa.


Assuntos
Drogas Ilícitas , Hidrocarbonetos Policíclicos Aromáticos , Transtornos Relacionados ao Uso de Substâncias , Humanos , República Democrática do Congo/epidemiologia , Heroína , Espectrometria de Massas em Tandem/métodos , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Surtos de Doenças , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/química
11.
Water Sci Technol ; 88(10): 2633-2645, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38017682

RESUMO

The effect of carboxyl and hydroxyl groups attached to the benzene ring on the photodegradation of anthracene (Ant) and pyrene (Pyr) in ice was investigated. The present study aims to explore the inhibition mechanism of five dissolved organic matter (DOM) model compounds' materials such as benzoic acid, o-hydroxybenzoic acid, m-hydroxybenzoic acid, p-hydroxybenzoic acid, and 3-phenyl propionic acid on the degradation of Ant and Pyr in ice. The photodegradation rate of Ant and Pyr were 50.33 and 37.44% in ice, with the photodegradation rate of Ant being greater than that of Pyr. The five DOM model compounds inhibited the photolysis of Ant and Pyr, and the influence mechanism on the photodegradation of Ant and Pyr depended upon the types and positions of functional groups on the benzene. Among them, the structure in which the carboxyl group was directly connected to the benzene ring and carboxyl was located at the ortho position of a hydroxy group had a strong inhibitory effect on the photodegradation of Ant and Pyr. Light-screening effects and quenching effects were the main inhibiting mechanism, and the binding ability of DOM model compounds material and PAHs is dominantly correlated with its inhibiting effect.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/química , Gelo , Fotólise , Benzeno
12.
Ecotoxicol Environ Saf ; 266: 115573, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37856983

RESUMO

Mechanochemistry and photocatalysis are emergent technologies for the remediation of polycyclic aromatic hydrocarbons (PAHs) in soils. In this work, mechanochemistry and photocatalysis are combined for pyrene degradation. The photodegradation of pyrene, when in contact with sepiolite under pressure application, is studied. The mechanical treatment leads to a pyrene crystal phase transformation. In this new phase, pyrene undergoes a fast photodegradation in the 320-420 nm range. We show that sepiolite is superior as a photocatalyst in pyrene degradation to TiO2, the most exploited photocatalyst. A broad physicochemical characterization is carried out to propose a mechanism in which the photoexcitation of mechanically altered pyrene leads to an electron transfer to sepiolite matrix, which triggers the PAH degradation. Finally, we want to highlight that the pyrene/sepiolite combination is a simplified system to shed light on how PAH photodegradation may occur in soils.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Fotólise , Hidrocarbonetos Policíclicos Aromáticos/química , Pirenos , Luz , Solo/química
13.
SAR QSAR Environ Res ; 34(7): 569-589, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37538006

RESUMO

The physicochemical characteristics of polycyclic aromatic compounds critical to environmental modelling such as octanol partition coefficients, solubility, lipophilicity, polarity and several equilibrium constants are functions of their underlying molecular structures, prompting the development of mathematical models to predict such characteristics for which experimental results are difficult to obtain. We propose twelve novel descriptors derived from geometric, harmonic and Zagreb degree-based descriptors and then test the effectiveness of these descriptors on a data set consisting of 55 benzenoid hydrocarbons of environmental importance. Our computations show that the proposed descriptors have a good linear correlation and predictive power when compared to the degree and distance type descriptors. We have also derived the QSPR expressions for four properties of a large series of polycyclic aromatics arising from circumscribing coronenes and show that a scaling factor can be deduced to derive physicochemical properties of such series up to 2D graphene sheets.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/química , Relação Quantitativa Estrutura-Atividade , Solubilidade , Modelos Teóricos , Estrutura Molecular
14.
Environ Sci Pollut Res Int ; 30(41): 93345-93362, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37548784

RESUMO

Rapid industrial and societal developments have led to substantial increases in the use and exploitation of petroleum, and petroleum hydrocarbon pollution has become a serious threat to human health and the environment. Polycyclic aromatic hydrocarbons (PAHs) are primary components of petroleum hydrocarbons. In recent years, microbial remediation of PAHs pollution has been regarded as the most promising and cost-effective treatment measure because of its low cost, robust efficacy, and lack of secondary pollution. Rhodococcus bacteria are regarded as one of main microorganisms that can effectively degrade PAHs because of their wide distribution, broad degradation spectrum, and network-like evolution of degradation gene clusters. In this review, we focus on the biological characteristics of Rhodococcus; current trends in PAHs degradation based on knowledge maps; and the cellular structural, biochemical, and enzymatic basis of degradation mechanisms, along with whole genome and transcriptional regulation. These research advances provide clues for the prospects of Rhodococcus-based applications in environmental protection.


Assuntos
Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Rhodococcus , Humanos , Hidrocarbonetos Policíclicos Aromáticos/química , Rhodococcus/metabolismo , Biodegradação Ambiental , Petróleo/metabolismo , Hidrocarbonetos/metabolismo
15.
Int J Biol Macromol ; 247: 125573, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37442502

RESUMO

The high viscosity of heavy oil made it difficult to exploit and transport heavy oil in pipeline. In this research, N-[(2-hydroxy-3-trimethylammonium) propyl] O-stearoyl chitosan tetraphenylboride (sc-CTS-st) was synthesized from chitosan, 2, 3-epoxy-propyl trimethyl ammonium chloride, sodium tetraphenylboron and stearyl chloride. sc-CTS-st contains long chain saturated aliphatic hydrocarbon, hydroxyl group and benzene ring, which could be dissolved in heavy oil fully and interacted with asphaltene. At 50 °C, the viscosity of heavy oil could be reduced to 13,800 mPa·s at most, with a viscosity reduction rate of 57.54 %. SEM and XRD showed that sc-CTS-st could affect the supramolecular accumulation structure of asphaltenes. Using FT-IR, sc-CTS-st could interact with asphaltene in the form of hydrogen bonds using the polar parts of the molecule, thereby weakening the self-association between asphaltene molecules. Molecular simulation was used to demonstrate the interaction mechanism between chitosan derivatives and asphaltenes. sc-CTS-st interacted with asphaltene through chemical bonding and influenced the self-association of asphaltene molecules. In addition, the non-polar portion of sc-CTS-st molecules could form a coating on the outside of the asphaltenes stacking structure, thus shielding or reducing the polarity of the stacking structure surface.


Assuntos
Quitosana , Hidrocarbonetos Policíclicos Aromáticos , Viscosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Hidrocarbonetos Policíclicos Aromáticos/química
16.
J Chromatogr A ; 1706: 464229, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37506458

RESUMO

In this study, naphthalene-modified magnetic nanoparticles (Fe3O4@Nap) were simply prepared based on specific chelation interaction between phosphate groups and metal ions on Fe3O4 surface. The resultant Fe3O4@Nap were characterized by FTIR, BET, SEM, TEM, NAM, TGA, and VSM techniques. With Fe3O4@Nap as adsorbent, the polycyclic aromatic hydrocarbons (PAHs) were efficiently extracted by magnetic solid-phase extraction (MSPE) from environmental water and fish samples through the π-π interaction between modified naphthalene groups and PAHs, followed by their determination by GC-MS/MS. The key parameters influencing the extraction efficiency were investigated. Under the optimized conditions, the Fe3O4@Nap-based MSPE/GC-MS/MS method proposed in this paper was evaluated and applied for analyzing PAHs in environmental water and fish samples. And the proposed MSPE/GC-MS/MS method exhibited good linearities for water samples (in the range of 0.1-10 ng/mL, R2 >0.9945) and for fish samples (in the range of 1-100 ng/g, R2 > 0.9905). The limits of detection (LODs) for water and fish samples were 0.004-0.031 ng/mL and 0.07-0.28 ng/g, respectively. Additionally, this method exhibited desirable accuracy and precision. The PAH recovery values from water and fish samples ranged from 81.5% to 109.6% with inter- and intra-day relative standard deviations (RSDs) of less than 12.8%. The MSPE/GC-MS/MS method was successfully applied to the analysis of real environmental water and fish samples. Overall, the newly synthesized Fe3O4@Nap exhibited high sensitivity, specificity, reusability, repeatability, and it could efficiently extract PAHs from environmental water and fish samples by MSPE.


Assuntos
Nanopartículas de Magnetita , Nanopartículas de Magnetita/química , Hidrocarbonetos Policíclicos Aromáticos/química , Animais , Água Subterrânea/química , Peixes , Microextração em Fase Sólida
17.
Bioresour Technol ; 384: 129293, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37295478

RESUMO

Occurrence, distribution, and toxicity assessment of polycyclic aromatic hydrocarbons (PAHs) in pyrolysis steams (biochar, biocrude, and biogas) of three agricultural residues was investigated at pyrolysis temperatures of 400-800 °C. Increasing PAHs formation was observed in the narrow temperature range (500-600 °C) in all feedstocks due to temperature-induced dehydration, decarboxylation, and dehydrogenation reactions. Low molecular weight PAHs (naphthalene, phenanthrene) were dominant in all product streams while high molecular weight PAHs were found in negligible concentrations. Leaching studies showed that pyrolyzed biochars produced at lower temperatures are more prone to leaching due to the presence of hydrophilic amorphous uncarbonized structures, while the presence of hydrophobic carbonized matrix with denser and stronger polymetallic complex prevents the leaching of PAHs in the high temperature pyrolyzed biochar. Low leaching potential, low toxic equivalency, and permissible total PAHs values in biochar derived from all three feedstocks warrant the broader application and ensure ecological safety.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/química , Biocombustíveis , Pirólise , Carvão Vegetal/química
18.
Chemosphere ; 335: 139059, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37268236

RESUMO

Due to their relatively high trophic position and importance as a food source for many communities in the circumpolar north, seabird eggs are an important matrix for monitoring contaminant levels. In fact, many countries, including Canada, have established long-term seabird egg contaminant monitoring programs, with oil related compounds a contaminant of emerging concern for seabirds in several regions. Current approaches to measuring many contaminant burdens in seabird eggs are time-consuming and often require large volumes of solvent. Here we propose an alternative approach, based on the principle of microbead beating tissue extraction using custom designed stainless-steel extraction tubes and lids, to measure a suite of 75 polycyclic aromatic compounds (polycyclic aromatic hydrocarbons (PAHs), alkyl-PAHs, halogenated-PAHs and some heterocyclic compounds) comprising a wide-range of chemical properties. Our method was conducted in strict accordance with ISO/IEC 17025 guidelines for method validation. Accuracies for our analytes generally ranged from 70 - 120%, and intra and inter-day repeatability for most analytes were < 30%. Limits of detection/quantitation for the 75 target analytes were < 0.2/0.6 ng g-1. The level of contamination in our method blanks was significantly smaller in our stainless-steel tubes/lids relative to commercially available high-density plastic alternatives. Overall, our method meets our data quality objectives and results in a notable reduction in sample processing times relative to current approaches.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Compostos Policíclicos , Microesferas , Hidrocarbonetos Policíclicos Aromáticos/química , Solventes , Aço
19.
Sci Total Environ ; 897: 165210, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37391151

RESUMO

This study analyzed the effect of enzymatic aging (horseradish peroxidase) of biochars on their content of solvent extractable (Ctot) and freely dissolved (Cfree) polycyclic aromatic hydrocarbons (PAHs). Physicochemical properties and phytotoxicity of pristine and aged biochars were also compared. The study used biochars obtained at 500 or 700 °C from sewage sludges (SSLs) or willow. Compared to SSL-derived biochars, willow-derived biochars were more susceptible to enzymatic oxidation. Aging increased the specific surface area and pore volume of most SSL-derived biochars. An opposite direction, however, was found in the willow-derived biochars. Low-temperature biochars, regardless of their feedstock, underwent physical changes, such as removal of labile ash components or degradation of aromatic structures. The enzyme caused an increase in the content of Ctot light PAHs in biochars (by 34-3402 %) and heavy PAHs (≥4 rings) in the low-temperature SSL-derived biochars (by 46-713 %). In turn, the content of Cfree PAHs decreased in aged SSL-derived biochars (by 32-100 %). In the willow-derived biochars the bioavailability of acenaphthene increased (by 337-669 %), while the immobilization degree of some PAHs was lower (25-70 %) compared to the SSL-derived biochars (32-83 %). Nevertheless, aging positively affected the ecotoxicological properties of all biochars by increasing their stimulation effects or removing their phytotoxic effects on both Lepidium sativum seed germination and root growth. Significant relationships between the changes in Cfree PAH content, pH and salinity of SSL-derived biochars and seed germination/root growth inhibition were found. The study demonstrates that the risk associated with application of SSL-derived biochars, regardless of the type of SSL and pyrolysis temperature, can be lower in terms of Cfree PAHs than in the case of willow-derived biochars. Regarding to Ctot PAHs, high-temperature SSL-derived biochars are safer than low-temperature ones. In the case of application of high-temperature SSL-derived biochars, these with moderate alkalinity and salinity will not bring risks for plants.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Salix , Hidrocarbonetos Policíclicos Aromáticos/química , Esgotos/química , Peroxidase do Rábano Silvestre , Carvão Vegetal/química , Biotransformação
20.
Geobiology ; 21(5): 612-628, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37312289

RESUMO

Previous studies on high concentrations of polycyclic aromatic hydrocarbon (PAHs) present in the shallow-marine Um-Sohryngkew River (USR) Cretaceous/Paleogene Boundary (KPB) section suggested regional fire incidences and biotic stress on life. However, such observations at the USR site have not been confirmed so far anywhere else in the region, we, therefore, do not know whether the signal was local or regional. Thus, to find out charred organic markers associated with the shelf facies KPB outcrop (at a distance of over 5 km) of the Mahadeo-Cherrapunji road (MCR) section, PAHs were analyzed using gas chromatography-mass spectroscopy. Data show a notable rise in the PAHs and exhibit maximum abundance in the shaly KPB transition layer (in biozone P0) and the immediately underlying layer. The PAH excursions match well with the major incidences of the Deccan volcanic episodes and convergence of the Indian plate with the Eurasian and Burmese plates. These events were responsible for seawater disturbances and eustatic and depositional changes, including the retreat of the Tethys. The incidence of high amount of pyogenic PAHs unrelated to the total organic carbon content is suggestive of wind-blown or aquatic system transportation. A down-thrown shallow-marine facies of the Therriaghat block was responsible for an early accumulation of PAHs. However, the spike of perylene in the immediately underlying KPB transition layer is plausibly linked to the Chicxulub impact crater core. Anomalous concentrations of combustion-derived PAHs together with the high fragmentation and dissolution of the planktonic foraminifer shells show marine biodiversity and biotic distress. Significantly, the pyrogenic PAH excursions are restricted to either the KPB layer itself or strictly below or above it, indicating regional fire incidences and attendant KPB transition (66.016 ± 0.050 Ma).


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Água do Mar , Humanos , Facies , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/química , Rios/química , Índia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...